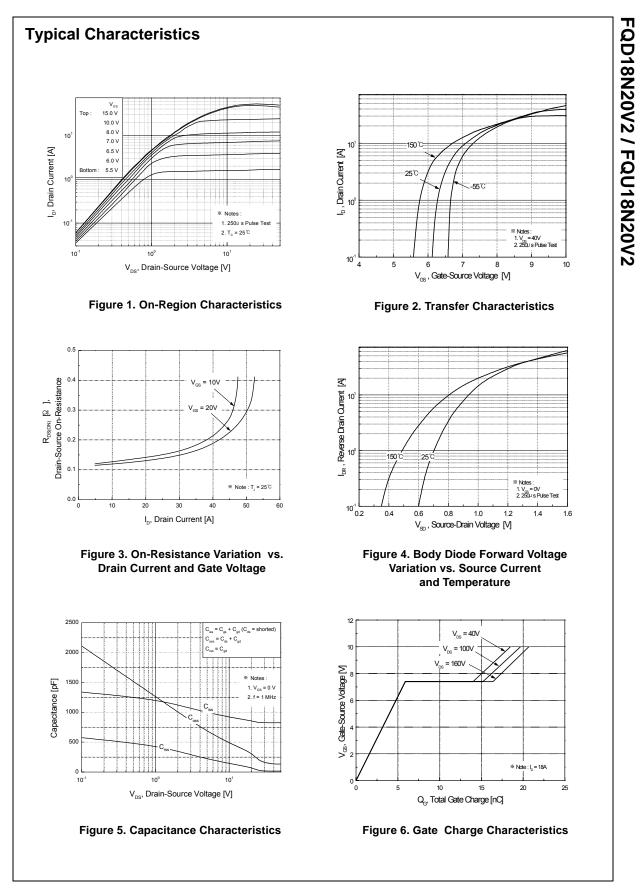
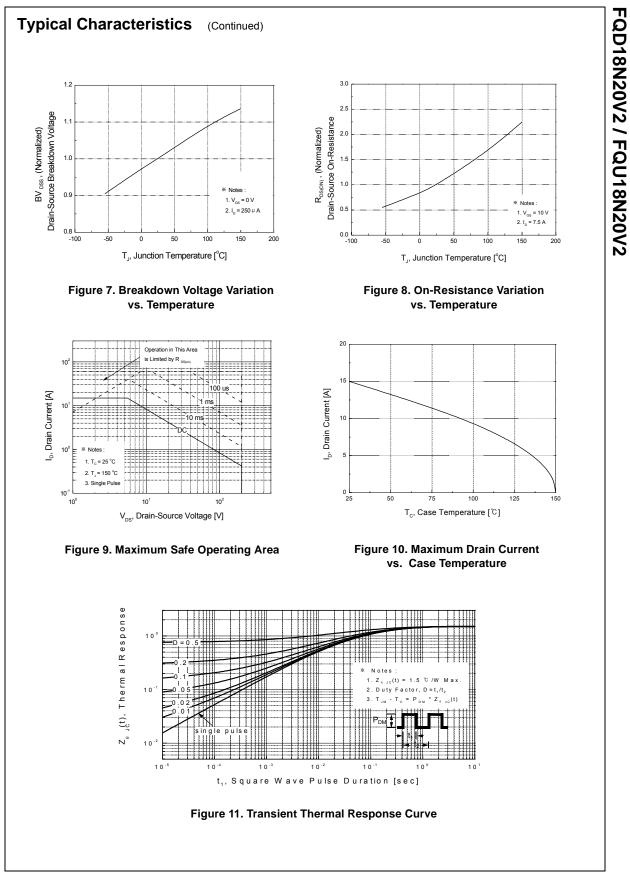
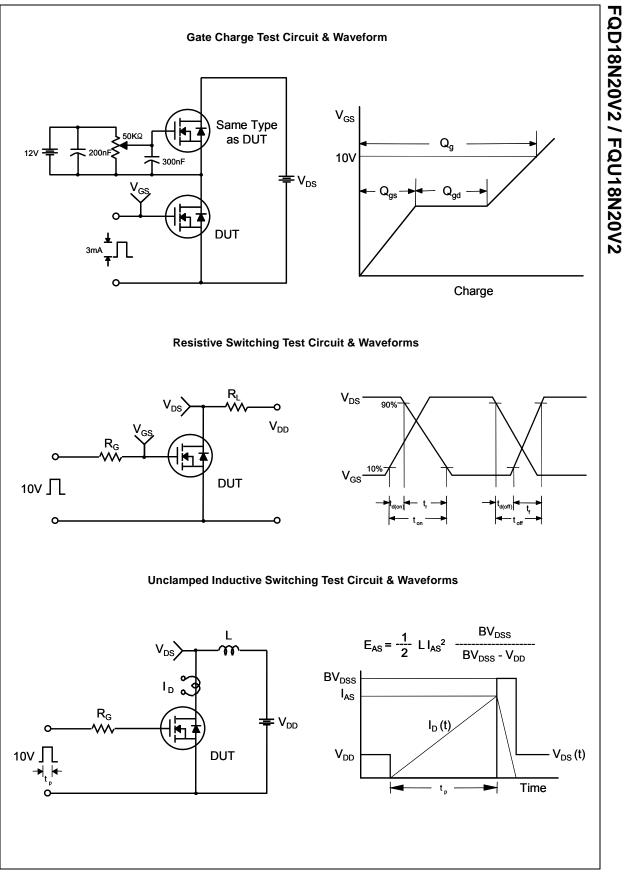


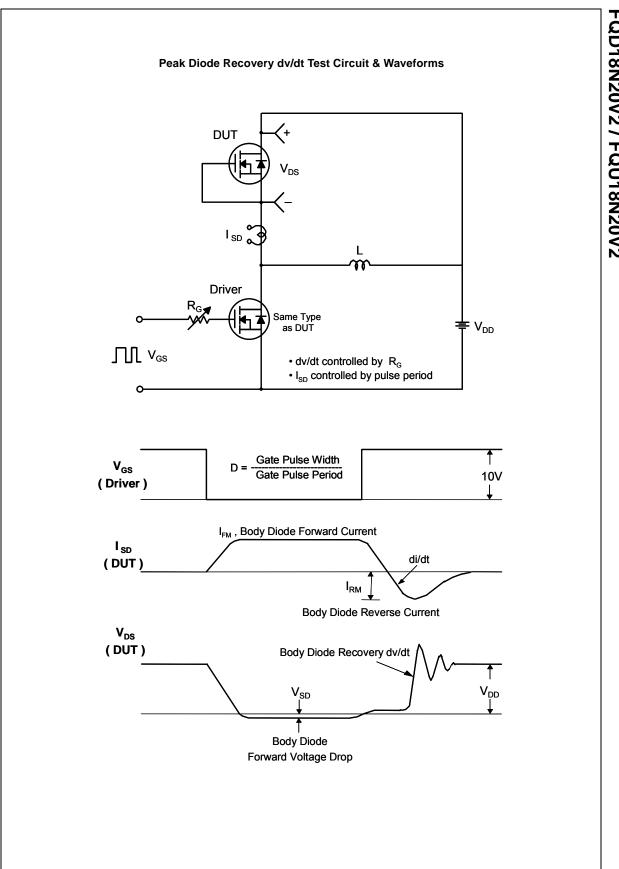
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

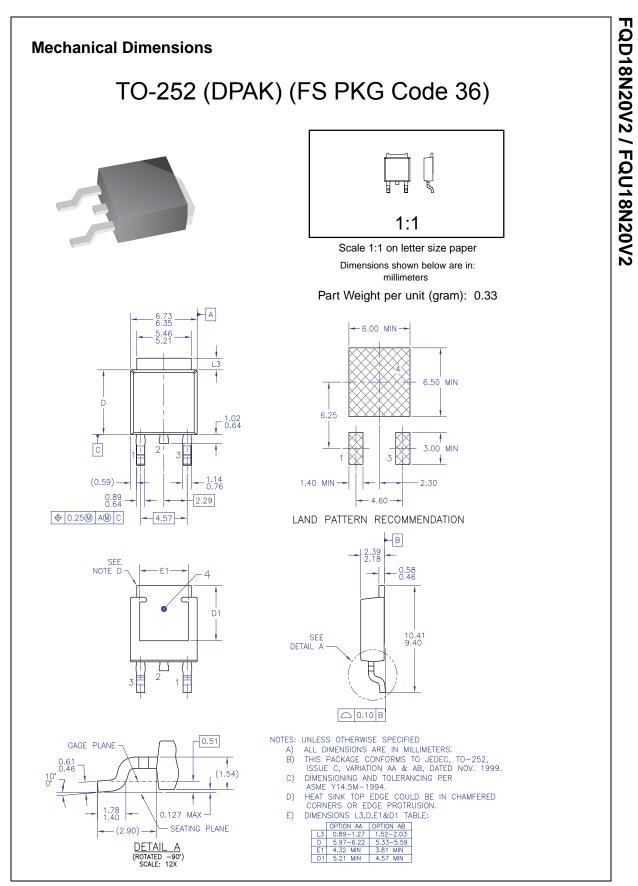

Symbol	Parameter		FQD18N20V2 / FQU18N20V2	Units
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		15	А
	- Continuous (T _C = 100°C)		9.75	А
I _{DM}	Drain Current - Pulsed	(Note 1)	60	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	340	mJ
I _{AR}	Avalanche Current	(Note 1)	15	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	8.3	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.5	V/ns
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		83	W
	- Derate above 25°C		0.67	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

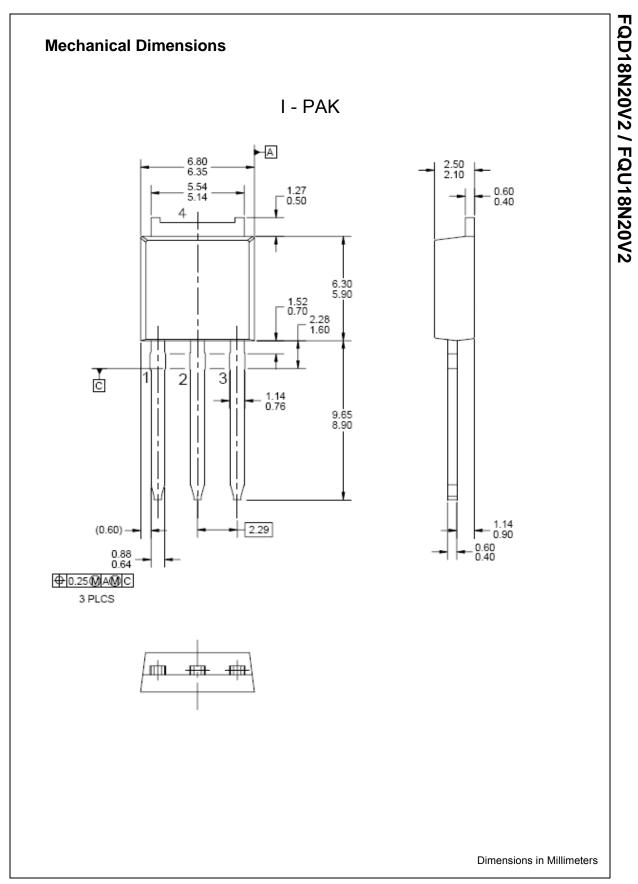

Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient		110	°C/W

Off Cha BV _{DSS} ΔBV _{DSS} / ΔT _J		Test Conditions		Тур	Max	Units
BV _{DSS} ΔBV _{DSS} / ΔT _J	ractoristics					
ΔBV _{DSS} / ΔT _J	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	200			V
U	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu$ A, Referenced to 25°C		0.25		V/°C
	Zara Cata Valtaga Drain Current	V _{DS} = 200 V, V _{GS} = 0 V			1	μA
	Zero Gate Voltage Drain Current	V _{DS} = 160 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.5 \text{ A}$		0.12	0.14	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 7.5 A (Note 4)		11		S
C _{iss}	c Characteristics Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		830	1080	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		200	260	pF
C _{rss}	Reverse Transfer Capacitance		-	25	33	pF
C _{oss}	Output Capacitance	V _{DS} = 160 V, V _{GS} = 0 V, f = 1.0 MHz		70		pF
C _{oss} eff.	Effective Output Capacitance	V_{DS} = 0V to 160 V, V_{GS} = 0 V		135		pF
	ng Characteristics					
Switchi	ng Characteristics			16	40	ns
Switchi t _{d(on)}	Turn-On Delay Time	V _{DD} = 100 V, I _D = 18 A,		16 133	40	ns
Switchi t _{d(on)} t _r	Turn-On Delay Time Turn-On Rise Time	V_{DD} = 100 V, I _D = 18 A, R _G = 25 Ω		133	275	ns
Switchi t _{d(on)} t _r	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time			133 38	275 85	ns ns
Switchi t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5)		133	275	ns
Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_G = 25 \Omega$ (Note 4, 5) V _{DS} = 160 V, I _D = 18 A,		133 38 62	275 85 135	ns ns ns
Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5)	 	133 38 62 20	275 85 135 26	ns ns ns nC
Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 V, I_{D} = 18 A,$ $V_{GS} = 10 V$ (Note 4, 5)	 	133 38 62 20 5.6	275 85 135 26 	ns ns nC nC
Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 V, I_{D} = 18 A,$ $V_{GS} = 10 V$ (Note 4, 5) (Note 4, 5)	 	133 38 62 20 5.6	275 85 135 26 	ns ns nC nC
Switchi t _{d(on)} t _r Qg Qgs Qgd Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics and	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 V, I_{D} = 18 A,$ $V_{GS} = 10 V$ (Note 4, 5) (N		133 38 62 20 5.6 10	275 85 135 26 	ns ns nC nC nC
Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gd} Drain-S I _S I _S V _{SD}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics an Maximum Continuous Drain-Source Diode F Drain-Source Diode Forward Voltage	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 V, I_{D} = 18 A,$ $V_{GS} = 10 V$ (Note 4, 5) (N	 	133 38 62 20 5.6 10	275 85 135 26 15	ns ns nC nC nC
Switchi t _{d(on)} t _r Qg Qgs Qgd Drain-S	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 V, I_{D} = 18 A,$ $V_{GS} = 10 V$ (Note 4, 5) (N	 	133 38 62 20 5.6 10 	275 85 135 26 15 60	ns ns nC nC nC


FQD18N20V2 / FQU18N20V2




Rev. B2, January 2009

FQD18N20V2 / FQU18N20V2

Rev. B2, January 2009

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ EcoSPARK [®] EfficentMax™ EZSWITCH™ *	FRFET [®] Global Power Resource SM Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™	Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SmartMax™	the franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™
Fairchild [®] Fairchild [®] Factrolid Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®]	MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™	µSérDes™ SerDes" UHC [®] Ultra FRFET™ UniFET™ VCX™ VisualMax™
FastvCore™ FlashWriter® * FPS™ F-PFS™ * EZSWITCH™ and FlashWriter [®] ar	PDP SPM™ Power-SPM™ PowerTrench [®] PowerXS™ e trademarks of System General Corporati	ESYSTEM [®] GENERAL The Power Franchise [®] ion, used under license by Fairchild Semiconduct	XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Earichild strongly encourages customers to purchase Farichild parts either directly from Fairchild of the or Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		